Phytochemical and Pharmacological Overview of Sahajan (Moringa oleifera)

Abdul Basit, Aleza Rizvi, Badruddeen, Janey Alam and Anuradha Mishra*
Faculty of Pharmacy, Integral University, Dasauli, Lucknow, India.

ABSTRACT
Moringa oleifera Lam. A truly miracle tree belongs to family Moringaceae, is a medium sized tree. The Moringa tree have spread to most part of Asia, nearly the whole of Africa, South America, southern part of North America and some pockets in Europe. The M. oleifera plant provides a rich and rare combination of zeatin, quercetin, β-sitosterol, and kaempferol. It is found to display a wide variety of pharmacological activities. The flowers of M. oleifera have stimulant, aphrodisiac, abortifacient, cholagogue property. Leaves are Purgative, applied as poultice to sores, used for piles, fevers, sore throat, bronchitis, scurry and catarrah. Root contains laxative, abortifacient, vesicant, carminative, anti-inflammatory. Stem bark is Rubefacient, vesicant and used to cure eye diseases and for the treatment of delirious patients prevent. Traditionally, the plant is used as antispasmodic, stimulant, expectorant and diuretic. The present article describes various traditional and medicinal importance of the plant. Such herbal drug may provide potential effect as of compared to the conventional available synthetic drugs, with less or no side effects. The present review summarizes the referential information on this plant in order to provide current knowledge for future works. It also includes some of the pharmacological activities of Moringa oleifera

Keywords: Moringa oleifera, Moringaceae, Miracle tree, Pharmacological activities.

INTRODUCTION
India is the largest producer of medicinal herbs and approximately called the botanical garden of the world. In rural India, 70% of the population is dependent on the traditional system of medicine. In western world also the practitioner of herbal medicines is steadily growing and approximately 40% of the population is taking herbs to treat diseases. The herbal products today symbolize safety in contrast to the synthetics that are regarded as unsafe to human and environment. Although herbs had been priced for their medicinal, flavouring and aromatic qualities for centuries, the synthetic products of the modern age surpassed their importance, for a while. However, the blind dependence on synthetics is over and people are returning to the naturals with hope of safety and security. According to WHO report, over 80% of the world population relies on the traditional medicine system largely plant, based for their primary health care needs. The use of plants for healing purposes predates human history and forms the origin of much modern medicine. In almost all the traditional medicines, the medicinal plants play a major role and constitute the backbone of the traditional medicines. India has a rich heritage of traditional medicines and the traditional health care system have been flourishing for many centuries. It mainly consist of three major systems namely Ayurveda, Siddha and Unani system of Medicine. Moringa oleifera Lam (Moringaceae) commonly known as drumstick or horseradish has an important position in Ayurveda- an Indian indigenous system of medicine. It is a small, fast, growing, evergreen tree that usually grows up to 10 or 12 m in height, native to the Sub-Himalaya tracts of India, Pakistan, Bangladesh, Central America, Afghanistan, and Africa. Moringa, which is rich in vegetable oil and high in nutritional values, is used in Asia as a vegetable and medicinal plant. This is attributed to the presence of proteins, vitamins, and various phenolic compounds in the oil. The diverse range of medicinal uses for Moringa oleifera, include its use as an antioxidant, anti-carcinogenic, anti-inflammatory, antispasmodic, diuretic, anti-ulcer, antibacterial, antifungal and its antinociceptive properties, as well as its wound healing ability has been demonstrated. Additionally, the root bark has been used as an...
analgesic, alexeteric, anthelmintic, and treatment for heart complaints, as well as for eye diseases, inflammation and dyspepsia. It is a perennial softwood tree with timber of low quality. *Moringa oleifera* is an important food commodity which has had enormous attention as the ‘natural nutrition of the tropics’. The leaves, fruit, flowers and immature pods of this tree are used as a highly nutritive vegetable in many countries, particularly in India, Pakistan, Philippines, Hawaii and many parts of Africa. Almost all the parts of this plant: root, bark, gum, leaf, fruit (pods), flowers, seed and seed oil have been used for various ailments in the indigenous medicine of South Asia. All parts of the Moringa tree are edible and have long been consumed by humans.

According to Fuglie the many uses for Moringa include: alley cropping (biomass production), animal forage (leaves and treated seed-cake), biogas (from leaves), domestic cleaning agent (crushed leaves), blue dye (wood), fencing (living trees), fertilizer (seed-cake), foliar nutrient (juice expressed from the leaves), green manure (from leaves), gum (from tree trunks), honey and sugar cane juice-clarifier (powdered seeds), honey (flower nectar), medicine (all plant parts), ornamental plantings, biopesticide (soil incorporation of leaves to prevent seedling damping off), pulp (wood), rope (bark), tannin for tanning hides (bark and gum), water purification (powdered seeds). Moringa seed oil (yield 30-40% by weight), also known as Ben oil, is a sweet non-sticking, non-drying oil that resists rancidity. It has been used in salads for fine machine lubrication and in the manufacture of perfume and hair care products.

This tree has in recent times been advocated as an outstanding machine lubrication and in the manufacture of perfume and hair care products. This tree has in recent times been advocated as an outstanding

Botanical Description

Synonyms

- Latin - *Moringa oleifera*
- Sanskrit - *Subhanjana*
- Hindi - *Saguna, Sainjna*
- Gujarati - *Suragavo*
- Tamil - *Morigkai*
- Telugu - *Mulaga, Munaga*
- Malayalam - *Murinna, Sigru*
- Punjabi - *Sainjna, Soanjna*
- Unani - *Sahajan*
- Ayurvedic - *Akshiva, Haritashaaka, Raktaka, Tikshnagandhaa*
- Arabian - *Rawag*
- French - *Moringe à graine ailée, Morungue*
- Spanish - *Ángela, Ben, Moringa*
- Portuguese - *Moringa, Moringueiro*
- Chinese - *La ken*
- English - *Drumstick tree, Horseradish tree, Ben tree*

Morphology

Moringa oleifera is a small, fast-growing evergreen or deciduous tree that usually grows as high as 9 m. with a soft and white wood and with corky and gummy bark. Leaves are longitudinally cracked. Leaves have long main axis (30-75 cm) and jointed branch. The leaflets are finely hairy, green and almost hairless on the upper surface, paler and hairless beneath, with red-tinged mid-veins, with entire (not toothed) margins and are rounded or blunt-pointed at the apex and short-pointed at the base. The twigs are finely hairy and green. Flowers are white, scented in large auxiliary down panicles, pods are pendulous, ribbed, and seeds are 3-angled.

Geographical Source

The tree is wild in the Sub-Himalayan tracts from Chenab to Oudh. It grows at elevations from sea level to 1400 m. It is very commonly cultivated near houses in Assam, Bengal and peninsular India. It is a prolific coppice. It is also cultivated in north-eastern Pakistan, north-eastern Bangladesh, Sri Lanka, West Asia, the Arabian peninsula, East and West Africa, throughout the West Indies and southern Florida, in Central and South America from Mexico to Peru, as well as in Brazil and Paraguay.

Traditional Uses

Traditionally, the plant is used as antispasmodic, stimulant, expectorant and diuretic. Internally it is used as stimulant, diuretic and antilithic. Seeds
are stimulant. Bark is emmenogogue, antifungal, antibacterial. Flowers are cholagogue, stimulant, tonic and diuretic and useful to increase the flow of bile. The plant is also a cardiac circulatory tonic and antiseptic. Pods are antipyretic, anthelmintic; fried pods are used in diabetes. Root juice is employed in cardiac tonic, antiepileptic, in nervous debility, asthma, enlarged liver and spleen, deep seated inflammation and as diuretic in calculus affection. Decoction is used as a gargle in hoarseness and sore throat. Root and fruit are antiparalytic. Leaf juice is used in hiccough (emetic in high doses), cooked leaves are given in influenza and catarrhal affections. Root-bark is used as antiviral, anti-inflammatory, analgesic. Stem-bark and flowers are hypoglycemic. Infusion of seed is anti-inflammatory, antispasmodic and diuretic, also given in venereal diseases.

Table 1: Medicinal uses of different plant parts

<table>
<thead>
<tr>
<th>S No.</th>
<th>Plant parts</th>
<th>Medicinal uses</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Root</td>
<td>Antilithic, rubefacient, laxative, abortifacient, vesicant, carminative, anti-inflammatory, stimulant in paralytic affections; a Cardiac/circulatory tonic used in treating Rheumatism, articular pains, lower back or kidney pain and constipation. (Fig: 1a)</td>
</tr>
<tr>
<td>2</td>
<td>Leaves</td>
<td>Purgative, applied as poultice to sores, rubbed on the temples for Headaches; used for piles, fevers, sore throat, bronchitis, eye and Ear infections, scurvy and catarrh; leaf juice is believed to control Glucose levels, applied to reduce glandular swelling (Fig: 1b)</td>
</tr>
<tr>
<td>3</td>
<td>Stem bark</td>
<td>Rubefacient, vesicant and used to cure eye diseases and for the treatment of delirious patients; prevent enlargement of the spleen and formation of tuberculous glands of the neck, used to destroy tumors and to heal ulcers. (Fig: 1c)</td>
</tr>
<tr>
<td>4</td>
<td>Root bark</td>
<td>The juice from the root bark is put into ears to relieve earaches and also placed in a tooth cavity as a pain killer, and has anti-tubercular activity</td>
</tr>
<tr>
<td>5</td>
<td>Gum</td>
<td>Used for dental caries, and as astringent and rubefacient; Gum, mixed with sesam oil is used to relieve headaches, fevers, intestinal complaints, dysentery, asthma and sometimes used as an abortifacient, and to treat syphilis and rheumatism</td>
</tr>
<tr>
<td>6</td>
<td>Flower</td>
<td>Stimulant, aphrodisiac, abortifacient, chologogue; used to cure inflammations, muscle diseases, hysteria, tumors, and enlargement of the spleen; lower the serum cholesterol, phospholipid, triglyceride, VLDL, LDL cholesterol to phospholipid ratio and atherogenic index; decrease lipid profile of liver, heart and aorta in hypercholesterolaemic rabbits (Fig: 1d)</td>
</tr>
<tr>
<td>7</td>
<td>Seed</td>
<td>Seed extract exerts its protective effect by decreasing liver lipid peroxides 18</td>
</tr>
</tbody>
</table>

Table 2: Phytochemicals isolated from different parts of plant

<table>
<thead>
<tr>
<th>Phytochemical content</th>
<th>Isolated from</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzylamine 20</td>
<td>Root bark</td>
</tr>
<tr>
<td>Aurantiamide acetate (a rare dipeptide) and 1,3 dibenzyl urea 21</td>
<td>Root</td>
</tr>
<tr>
<td>Vanillin, β-sitosterol, β-sitosteneone, 4-hydroxymellein and octacosanoic acid 22</td>
<td>Stem</td>
</tr>
<tr>
<td>β-Sitosterol, Alkaloids- moringine, moringine 23</td>
<td>Stem bark</td>
</tr>
<tr>
<td>4-Hydroxymellein, Vanillin, Octacosanoic acid, β-Sitosteneone 24</td>
<td>Stem</td>
</tr>
<tr>
<td>L-arabinose, D-galactose, D-glucuronic acid, L-rhamnose, D-mannose and D-xylose 25</td>
<td>Gum</td>
</tr>
<tr>
<td>Gossypetin, niazirin and niazirin 26, three mustard oil glycosides, 4-[(4'-O-acetyl-α-L-rhamnosyloxy)benzy] isothiocyanate, niaziminin A and niaziminin B. 26</td>
<td>Leaves</td>
</tr>
<tr>
<td>Quercetagrin, kaempferol, quercetin and rutin; Ascorbic acid, carotenoids (mainly lutein and β-carotene) 20</td>
<td>Pods</td>
</tr>
<tr>
<td>Glycosides-thiocarbarbate and isothiocyanate. Two new compounds, O-[2'-hydroxy-3'-(2''-heptylenoxy)]-propyl undecanoate and O-ethyl-4'-(l-L-rhamnosyloxy)-benzyl carbamate. Methyl p-hydroxybenzoate and β-sitosterol have also been isolated. A water-soluble polysaccharide was isolated from the aqueous extract of pods of Moringa oleifera. The polysaccharide contains D-galactose, 6-O-Me-D-galactose, D-galacturonic acid, L-arabinose and 1-rhamnose. Plant hormones- auxins and cytokinins.</td>
<td>Leaves and pods</td>
</tr>
<tr>
<td>Glycosides-carbamate,thiocarbarbate, and isothiocyanate Ascorbic acid, oestrogenic substances, β- sitosterol,iron, calcium, phosphorus, copper, Vitamin A, B, C, α-tocopherol,riboflavin, nicotinic acid, folic acid, pyridoxine, β-carotene, proteins, essential amino acids – methionine, cystine, tryptophan and lysine. Novel bioactive nitrile glycosides- Niazirinid and niazirin 26</td>
<td>Leaves and pods</td>
</tr>
<tr>
<td>Rhamnetin, Amino acids, sucrose,d-glucose, traces of alkaloids, wax Flavonoids -quercitin, kaempferol, isoquercitrin,rhamnetin, kaempferitin</td>
<td>Flowers</td>
</tr>
<tr>
<td>Indole acetic acid, Indole acetonitrile, Proanthocyanidins</td>
<td>Leaves, flowers and fresh beans</td>
</tr>
<tr>
<td>--</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>α and gamma tocopherols</td>
<td>Fruit</td>
</tr>
<tr>
<td>Moringyne, Monopalmiticdioleidioleic triglyceride, 4-Hydroxyphenyl acetaldehyde, 4-Hydroxyphenylacetic acid, O-ethyl-4-(α-L-rhamnopyranosyl) benzyl carbamate, 4(α-L-rhamnopyranosyl) benzyl isothiocyanate, 4(α-L-rhamnopyranosyl)benzyl nitrile, 4(α-L-rhamnopyranosyl)benzylglucosinolate, niazimicin, 3-O-(6'-O-oleyl-beta-D-glucopyranosyl)-β-sitosterol, β-sitosterol-3-O-β-D-glucopyranoside, niazirin, β-sitosterol, glycerol-1-(9-octadecanolate), isothiocyanates, thiocarbamates and flavonoids Presence of a hemagglutinin is also reported</td>
<td>Seeds</td>
</tr>
<tr>
<td>Campesterol(up to 15.13 %), stigmasterol (up to 17.27 %), β-sitosterol (up to 50.07 %), delta5-avenasterol, delta7-avenasterol, clerosterol, 24-methylenecholesterol, delta7-campestanol, stigmastanol, 28-isoavenasterol, unsaturated fatty acids - (especially oleic acid up to 75.39 %) Saturated fatty acids - behenic (up to 6.73 %) and palmitic (upto 6.04 %) monoterpenoid compounds (81.8 %) dominate the oil of Moringa oleifera with an abundance of α-phellandrene (25.2 %) and p-cymene (24.9 %)</td>
<td>Seed oil</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1, 2, 3 – triolein</th>
<th>Linoleic acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,3 – dilinoleoyl-2-olein</td>
<td></td>
</tr>
</tbody>
</table>

4-(α-L-rhamnopyranosylxy) benzyl glucosinolate
Linoleic sitosteroate

4-(α-L-rhamnopyranosyloxy) benzyl glucosinolate

Pharmacological Properties
Moringa oleifera also has numerous medicinal uses, which have long been recognized in the Ayurvedic and Unani systems of medicine. The medicinal attributes and pharmacological activities ascribed to various parts of Moringa are detailed below.

Antioxidant activity
Hydro-alcoholic extract of Moringa oleifera at doses of 125 mg/kg body weight and 250 mg/kg body weight for 7 and 14 days, respectively produced antioxidant property. Ethanol extract of Moringa oleifera leaves in alteration of brain monoamines (norepinephrine, dopamine and serotonin) & EEG wave pattern in Alzheimer's disease in rats. Treatment with Moringa oleifera leaf extract restores the monoamine levels of brain regions to near control levels. 39

CNS Activity
Ethanol extract from the leaves of Moringa oleifera at dose of 2000mg/kg protected mice against pentylenetetrazol induced convulsion and also possess CNS depressant activity. 38

Antimicrobial activity
Moringa oleifera root bark extract was investigated against Staphylococcus aureus, Escherichia coli, Salmonella gallinarum and Pseudomonas aeruginosa in vitro. Both the gram-positive and gram-negative organisms showed variable sensitivity to different extracts of M. oleifera root bark in organic solvents like methanol, acetone, ethyl acetate and chloroform and in inorganic solvent, water. Ethyl acetate and acetone extracts showed maximum antibacterial activity. 40
Protease Inhibitor
Among the different parts of *M. oleifera* tested, the crude extract isolated from the mature leaves and seeds showed the highest level of inhibition against trypsin. Various extraction media evaluated, the crude extract prepared in phosphate buffer showed maximum recovery of the protease inhibitor. The protease inhibitor recorded high inhibitory activity toward the serine proteases trhomin, elastase, chymotrypsin and the cysteine.

Antalgesic, Antipyretic & Wound Healing Activity
Aqueous extract of bark of *Moringa oleifera* for normal wound healing and dexamethasone suppressed wound healing using incision, excision and dead space, *Moringa oleifera* significantly increased the wound breaking strength in incision wound mode wound models in Wistar rats.

Anti-Diabetic Activity
The aqueous extract of *M. oleifera* leaves as a potent antidiabetic were assessed histomorphometrically, ultrastructurally and biochemically. *M. oleifera* treatment significantly ameliorated the altered FPG (from 380% to 145%), reduced glutathione (from 22% to 73%) and malondialdehyde (from 385% to 118%) compared to control levels. *M. oleifera* significantly increased the areas of positive purple modified Gomori stained cells (from 60% to 91%) and decreased the area percentage of collagen fibers (from 199% to 120%) compared to control values. Anti-diabetic effect of leaves of *Moringa oleifera* on glucose tolerance in Goto-Kakizaki and Wistar rats. Moringa significantly decreased the blood glucose in Wistar rats. The area under the curve of changes in the blood glucose was significantly higher in the Goto-Kakizaki rats. The action of MO was greater in Goto-Kakizaki rats than in Wistar rats.

Anti-Ulcer Activity
Ethanol root-bark extract of *Moringa oleifera* at doses of 350 and 500 mg/kg decreased the ulcer index significantly as compared to the control group, ethanol-induced and pylorus ligation-induced gastric ulceration. The leaf extracts of *Moringa oleifera* (150 mg·kg$^{-1}$, p.o.) in rats offered significant protection against indomethacin-induced, ethanol-induced, and ischemic reperfusion-induced ulcer models when compared to the control group.

Antimalarial
M. oleifera seeds were evaluated for the larvicidal and pupicidal potential of the methanolic extracts against malarial vector *Anopheles stephensi* mosquitoes at different concentrations (20, 40, 60, 80 and 100 ppm). Phytochemicals derived from *M. oleifera* seeds extracts are effective mosquito vector control agents.

Commercial and industrial application of *Moringa oleifera*
Water treatment
Significant cytotoxic effects were observed when the powdered *M. oleifera* seeds concentration is from 1 to 50 mg/L. Through direct contact, ethanolic-water extraction and hexane extraction, the toxic effects of hydrophobic and hydrophilic components in *M. oleifera* seeds were distinguished. It suggested that the hydrophobic lipids contributed to the dominant cytotoxicity, consequently resulting in the dominant genotoxicity in the water-soluble fraction due to limited dissolution when the *M. oleifera* seeds granule concentration was from 10 to 1000 mg/L. The highest removal efficiency of color, turbidity, and UV-254 nm occurred with 1M NaCl solution, with coagulant concentration between 100 and 300 mg L$^{-1}$. *Moringa oleifera* seed utilizing electrophoresis, and compared the efficiency of different extracts obtained, using solutions of NaCl (0.01 M, 0.1 M and 1 M), distilled water, *Moringa oleifera* Lam seed, acting as a natural coagulant in order to obtain drinking water.

Poultry Diet
Moringa oleifera leaves in maize meal fed to poultry showed profound, statistically significant effect on their weight as well as intensity in coloration of the beaks and legs, combs and wattles, in contrast to a control (maize-meal only) feeding of broilers. Moreover, a significant level of the biochemical minerals of serum Calcium, Sodium, Potassium, Chloride, Albumen and Triglyceride were observed in broilers fed with the formulated *Moringa oleifera* leaves and maize meal as compared to the maize meal only (control).
Ben Oil
The Moringa seeds yield 38–40% edible oil (called ben oil from the high concentration of behenic acid contained in the oil). The refined oil is clear, odorless, and resists rancidity at least as well as any other botanical oil. The seed cake remaining after oil extraction may be used as a fertilizer or as a flocculent to purify water. Oil from the seed, called oil of Ben, is used for earache and in ointments for skin conditions. The oil rubbed on the skin is said to prevent mosquitoes from biting.

Bio-Gas
Methane gas can also produce out of the leaves. Experiments have established that it is possible to produce 4400 cubic meters of bio gas per hectare per year.

REFERENCES

45. Kumar Choudhary M, Surendra H, Bodakhe, Sanjay Kumar Gupta: Assessment of the Antiluicer Potential of *Moringa oleifera* Root-Bark Extract in
48. Ali Adnan Al-Anizi, Maria Theresa Hellyer, Dayi Zhang, Toxicity assessment and modelling of *Moringa oleifera* seeds in water purification by whole cell bioreporter, *water research*, 2014, 56, 77-87